Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.953
Filtrar
1.
ACS Sens ; 9(4): 2141-2148, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38578241

RESUMO

The glycated hemoglobin (HbA1c) level, which is defined as the ratio of HbA1c to total hemoglobin (tHb, including glycated and unglycated hemoglobin), is considered one of the preferred indicators for diabetes monitoring. Generally, assessment of the HbA1c level requires separate determination of tHb and HbA1c concentrations after a complex separation step. This undoubtedly increases the cost of the assay, and the loss or degradation of HbA1c during the separation process results in a decrease in the accuracy of the assay. Therefore, this study explored a dual-signal acquisition method for the one-step simultaneous evaluation of tHb and HbA1c. Quantification of tHb: graphene adsorbed carbon quantum dots and methylene blue were utilized as the substrate material and linked to the antibody. tHb was captured on the substrate by the antibody. The unique heme group on tHb catalyzed the production of •OH from H2O2 to degrade methylene blue on the substrate, and a quantitative relationship between the tHb concentration and the methylene blue oxidation current signal was constructed. Quantification of HbA1c: complex labels with HbA1c recognition were made of ZIF-8-ferrocene-gold nanoparticles-mercaptophenylboronic acid. The specific recognition of the boronic acid bond with the unique cis-diol structure of HbA1c establishes a quantitative relationship between the oxidation current of the label-loaded ferrocene and the concentration of HbA1c. Thus, the HbA1c level can be assessed with only one signal readout. The sensor exhibited extensive detection ranges (0.200-600 ng/mL for tHb and 0.100-300 ng/mL for HbA1c) and low detection limits (4.00 × 10-3 ng/mL for tHb and 1.03 × 10-2 ng/mL for HbA1c).


Assuntos
Hemoglobinas Glicadas , Azul de Metileno , Hemoglobinas Glicadas/análise , Humanos , Azul de Metileno/química , Grafite/química , Ouro/química , Nanopartículas Metálicas/química , Pontos Quânticos/química , Hemoglobinas/análise , Hemoglobinas/química , Ácidos Borônicos/química , Compostos Ferrosos/química , Metalocenos/química , Limite de Detecção , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/química
2.
ACS Sens ; 9(3): 1565-1574, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38447101

RESUMO

Molecular recognition and sensing can be coupled to interfacial capacitance changes on graphene foam surfaces linked to double layer effects and coupled to enhanced quantum capacitance. 3D graphene foam film electrodes (Gii-Sens; thickness approximately 40 µm; roughness factor approximately 100) immersed in aqueous buffer media exhibit an order of magnitude jump in electrochemical capacitance upon adsorption of a charged molecular receptor based on pyrene-appended boronic acids (here, 4-borono-1-(pyren-2-ylmethyl)pyridin-1-ium bromide, or abbreviated T1). This pyrene-appended pyridinium boronic acid receptor is employed here as a molecular receptor for lactate. In the presence of lactate and at pH 4.0 (after pH optimization), the electrochemical capacitance (determined by impedance spectroscopy) doubles again. Lactic acid binding is expressed with a Hillian binding constant (Klactate = 75 mol-1 dm3 and α = 0.8 in aqueous buffer, Klactate = 460 mol-1 dm3 and α = 0.8 in artificial sweat, and Klactate = 340 mol-1 dm3 and α = 0.65 in human serum). The result is a selective molecular probe response for lactic acid with LoD = 1.3, 1.4, and 1.8 mM in aqueous buffer media (pH 4.0), in artificial sweat (adjusted to pH 4.7), and in human serum (pH adjusted to 4.0), respectively. The role of the pyrene-appended boronic acid is discussed based on the double layer structure and quantum capacitance changes. In the future, this new type of molecular capacitance sensor could provide selective enzyme-free analysis without analyte consumption for a wider range of analytes and complex environments.


Assuntos
Grafite , Ácido Láctico , Humanos , Ácido Láctico/análise , Grafite/química , Ácidos Borônicos/química , Suor/química , Eletrodos
3.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400238

RESUMO

An overexpression of sialic acid is an indicator of metastatic cancer, and selective detection of sialic acid shows potential for cancer diagnosis. Boronic acid is a promising candidate for this purpose because of its ability to specifically bind to sialic acid under acidic conditions. Notably, the binding strength can be easily modulated by adjusting the pH, which allows for a simple dissociation of the bound sialic acid. In this study, we developed 5-boronopicolinic acid (5-BPA)-modified magnetic particles (BMPs) to selectively capture sialic acid biomolecules. We successfully captured fetuin, a well-known sialoglycoprotein, on BMPs at >104 molecules/particle using an acetate buffer (pH 5.0). Facile dissociation then occurred when the system was changed to a pH 7.6 phosphate buffer. This capture-and-release process could be repeated at least five times. Moreover, this system could enrich fetuin by more than 20 times. In summary, BMPs are functional particles for facile purification and concentration through the selective capture of sialic acid proteins and can improve detection sensitivity compared with conventional methods. This technology shows potential for the detection of sialic acid overexpression by biological particles.


Assuntos
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Ácido N-Acetilneuramínico/química , Sialoglicoproteínas/metabolismo , Ácidos Borônicos/química , Fetuínas
4.
Langmuir ; 40(8): 4361-4372, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38357828

RESUMO

Obtaining an enriched and phenotypically pure cell population from heterogeneous cell mixtures is important for diagnostics and biosensing. Existing techniques such as fluorescent-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) require preincubation with antibodies (Ab) and specialized equipment. Cell immunopanning removes the need for preincubation and can be done with no specialized equipment. The majority of the available antibody-mediated analyte capture techniques require a modification to the Abs for binding. In this work, no antibody modification is used because we take advantage of the carbohydrate chain in the Fc region of Ab. We use boronic acid as a cross-linker to bind the Ab to a modified surface. The process allows for functional orientation and cleavable binding of the Ab. In this study, we created an immunoaffinity matrix on polystyrene (PS), an inexpensive and ubiquitous plastic. We observed a 37% increase in Ab binding compared with that of a passive adsorption approach. The method also displayed a more consistent antibody binding with 17 times less variation in Ab loading among replicates than did the passive adsorption approach. Surface topography analysis revealed that a dextran coating reduced nonspecific antibody binding. Elemental analysis (XPS) was used to characterize the surface at different stages and showed that APBA molecules can bind upside-down on the surface. While upside-down antibodies likely remain functional, their elution behavior might differ from those bound in the desired way. Cell capture experiments show that the new surface has 43% better selectivity and 2.4-fold higher capture efficiency compared to a control surface of passively adsorbed Abs. This specific surface chemistry modification will allow the targeted capture of cells or analytes with the option of chemical detachment for further research and characterization.


Assuntos
Ácidos Borônicos , Poliestirenos , Poliestirenos/química , Ácidos Borônicos/química , Anticorpos/química
5.
Anal Chim Acta ; 1288: 342166, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220298

RESUMO

BACKGROUND: As an essential compound in living organism, saccharides have attracted enormous attentions from scientists in various fields. Understanding the distribution of saccharides in various samples is of great scientific importance. However, the low signal response and lack of specific recognition technology of saccharides and the complex matrix of samples make the analysis of saccharides a very challenge task. Thus, the development of a simple and straightforward strategy for the analysis of saccharides would represent a great contribution to the field. RESULTS: In this study, by employing the sulfonyl functionalized magnetic dendritic mesoporous silica nanoparticles as the substrate, we develop an integrated platform for analysis of saccharides. The construction of the platform mainly relied on multi-functional boronic acid, which serves as separation and derivation ligands at the same time. In the general procedure, the boronic acid is first immobilized onto the surface of substrate, then the selective enrichment of saccharides can be realized via boronate affinity separation. Finally, by the rational choice of the solution, we are able to elute the labelled complex (boronic acid-saccharide) from the substrate, which can be direct subjected to HPLC-UV analysis. The reliable precision (<15 %), accuracy (80-100 %), reproducibility (<10 %), improved sensitivity (20x) and limited time-consuming (down to minutes) of the proposed platform are experimentally demonstrated. SIGNIFICANCE AND NOVELTY: The successful quantification of different saccharides (alditols, glucose) in real samples is achieved. The proposed strategy is not only straightforward and fast, but also avoid the requirement of special equipment. With these attractive features, we believe that this strategy will greatly prompt the analysis of saccharides in various samples (eg. food, pharmaceutics and biosamples).


Assuntos
Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Reprodutibilidade dos Testes , Carboidratos/análise , Ácidos Borônicos/química , Nanopartículas/química , Fenômenos Magnéticos
6.
Org Biomol Chem ; 22(8): 1639-1645, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38180439

RESUMO

Sialic acid (SA) is a naturally occurring monosaccharide found in glycoproteins and glycolipids. Changes in the expression of SA are associated with several diseases; thus, the detection of SA is of great significance for biological research, cancer diagnosis, and treatment. Boronic acid analogs have emerged as a promising tool for detecting sugars such as SA due to its reversible covalent bonding ability. In this study, 11 bis-boronic acid compounds and 2 mono-boronic acid compounds were synthesized via a highly efficient Ugi-4CR strategy. The synthesized compounds were subjected to affinity fluorescence binding experiments to evaluate their binding capability to SA. Compound A1 was shown to have a promising binding constant of 2602 ± 100 M-1 at pH = 6.0. Density Functional Theory (DFT) calculations examining the binding modes between A1 and SA indicated that the position of the boronic acid functional group was strongly correlated with its interaction with SA's α-hydroxy acid unit. The DFT calculations were consistent with the observations from the fluorescence experiments, demonstrating that the number and relative positions of the boronic acid functional groups are critical factors in enhancing the binding affinity to SA. DFT calculations of both S and R configuration of A1 indicated that the effect of the S/R configuration of A1 on its binding with ß-sialic acid was insignificant as the Ugi-4CR generated racemic products. A fluorine atom was incorporated into the R2 substituent of A1 as an electron-withdrawing group to produce A5, which possessed a significantly higher capability to bind to SA (Keq = 7015 ± 5 M-1 at pH = 6.0). Finally, A1 and A5 were shown to possess exceptional binding selectivity toward ß-sialic acid under pH of 6.0 and 6.5 while preferring to bind with glucose, fructose, and galactose under pH of 7.0 and 7.5.


Assuntos
Ácidos Borônicos , Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Ácidos Borônicos/química , Monossacarídeos , Glucose , Galactose
7.
Macromol Biosci ; 24(1): e2300001, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36786665

RESUMO

In an effort to augment the function of supramolecular biomaterials, recent efforts have explored the creation of hybrid materials that couple supramolecular and covalent components. Here, the benzenetricarboxamide (BTA) supramolecular polymer motif is modified to present a phenylboronic acid (PBA) in order to promote the crosslinking of 1D BTA stacks by PBA-diol dynamic-covalent bonds through the addition of a multi-arm diol-bearing crosslinker. Interestingly, the combination of these two motifs serves to frustrate the resulting assembly process, yielding hydrogels with worse mechanical properties than those prepared without the multi-arm diol crosslinker. Both systems with and without the crosslinker do, however, respond to the presence of a physiological level of glucose with a reduction in their mechanical integrity; repulsive electrostatic interactions in the BTA stacks occur in both cases upon glucose binding, with added competition from glucose with PBA-diol bonds amplifying glucose response in the hybrid material. Accordingly, the present results point to an unexpected outcome of reduced hydrogel mechanics, yet increased glucose response, when two disparate dynamic motifs of BTA supramolecular polymerization and PBA-diol crosslinking are combined, offering a vision for future preparation of glucose-responsive supramolecular biomaterials.


Assuntos
Ácidos Borônicos , Glucose , Ácidos Borônicos/química , Hidrogéis/química , Materiais Biocompatíveis
8.
Chemistry ; 30(7): e202302485, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967030

RESUMO

Iminoboronates and diazaborines are related classes of compounds that feature an imine ortho to an arylboronic acid (iminoboronate) or a hydrazone that cyclizes with an ortho arylboronic acid (diazaborine). Rather than acting as independent chemical motifs, the arylboronic acid impacts the rate of imine/hydrazone formation, hydrolysis, and exchange with competing nucleophiles. Increasing evidence has shown that the imine/hydrazone functionality also impacts arylboronic acid reactivity toward diols and reactive oxygen and nitrogen species (ROS/RNS). Untangling the communication between C=N linked functionalities and arylboronic acids has revealed a powerful and tunable motif for bioconjugation chemistries and other applications in chemical biology. Here, we survey the applications of iminoboronates and diazaborines in these fields with an eye toward understanding their utility as a function of neighboring group effects.


Assuntos
Ácidos Borônicos , Iminas , Ácidos Borônicos/química , Iminas/química , Hidrazonas/química , Biologia
9.
Chempluschem ; 89(2): e202300613, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38033190

RESUMO

Boronate esters, formed by the reaction of an oligonucleotide bearing a 5'-boronic acid moiety with the 3'-terminal cis-diol of another oligonucleotide, support the assembly of functional nucleic acid architectures. Reversible formation of boronate esters occurs in templated fashion and has been shown to restore the activity of split DNA and RNA enzymes as well as a split fluorescent light-up aptamer. Apart from their suitability for the design and application of split nucleic acid enzymes and aptamers in the field of biosensing, boronate esters may have played an important role in early life as surrogates of the natural phosphodiester bond. Their formation is reversible and thus fulfills an important requirement for biological self-assembly. Here we discuss the general concept of stimuli-dependent boronate formation and its application in biomolecules with implications for future research.


Assuntos
Ácidos Nucleicos , Ésteres , Oligonucleotídeos , Ácidos Borônicos/química
10.
J Sep Sci ; 47(1): e2300620, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066235

RESUMO

Herein, a magnetic borate-functionalized MXene composite with multiple boronic affinity sites was fabricated by embedding Fe3 O4 nanoparticles with 4-formylphenylboronic acid functionalized Ti3 C2 Tx nanosheets and served as sorbent for the simultaneous extraction of catecholamines (CAs) in urine samples. The morphology and structure of the magnetic materials were investigated using scanning microscopy, vibrating sample magnetometer, X-ray photoelectron spectrometer, and X-ray diffraction. The introduction of polyethyleneimine can amplify the bonded boronic acid groups, thereby effectively improving the adsorption capacities for CAs based on the multiple interactions of boronic affinity, hydrogen bonding, and metal coordination. The adsorption performance was investigated using the kinetics and isotherms models, and the main parameters that influence the extraction efficiency were optimized. Under the most favorable magnetic solid-phase extraction condition, a sensitive method for the analysis of CAs in urine samples was developed by combining magnetic solid-phase extraction conditions with high-performance liquid chromatography detection. The findings illustrated that the proposed approach possessed a wide linearity range of 0.05-250 ng/mL with an acceptable correlation coefficient (R2  ≥ 0.9984) and detection limits of 0.010-0.015 ng/mL for the target CAs. The research not only provides a notable composite with multiple boronic affinity sites but also offers an effective and feasible measure for the detection of CAs in biological samples.


Assuntos
Catecolaminas , Nanopartículas de Magnetita , Nitritos , Elementos de Transição , Polietilenoimina/química , Adsorção , Ácidos Borônicos/química , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida , Nanopartículas de Magnetita/química , Fenômenos Magnéticos
11.
Int J Biol Macromol ; 258(Pt 1): 128721, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101687

RESUMO

Phenylboronic acid (PBA) groups are effective in building glucose-responsive drug delivery systems. Chitosan (CS) offers distinct advantages in the construction of PBA-based biomaterials, such as biodegradability and biocompatibility. However, challenges still persist due to the limited solubility of CS. This study proposes an efficient approach to introduce PBA groups into CS chains within 1 h via the O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU)-mediated amidation between 3-carboxyphenylboronic acid (CPBA) and O-hydroxypropyl chitosan (HPCS). The results showed that a wide range of substitution degrees, from 0.15 to 0.78, could be finely controlled by the amount of CPBA added. Furthermore, the obtained novel carboxyphenylboronic acid-grafted hydroxypropyl chitosan (PBA-HPCS) derivative showed enhanced crystallinity and thermostability compared to HPCS, and it demonstrated solubility in an alkaline solution. Based on the reversible bonding between the boronic acid group and cis-1,2/1,3-diols, PBA-HPCS was successfully used as an efficient crosslinker for the preparation of hydrogels incorporating sorbitol and polyhydroxy polymers, such as guar gum and polyvinyl alcohol. These hydrogels exhibited rapid gelation, rapid self-healing, injectability, and responsiveness to glucose and pH. These findings suggest that PBA-HPCS holds promise for advancing the development of PBA-based biomaterials.


Assuntos
Quitosana , Quitosana/química , Concentração de Íons de Hidrogênio , Hidrogéis/química , Ácidos Borônicos/química , Glucose/química , Materiais Biocompatíveis , Derivados da Hipromelose
12.
J Chromatogr A ; 1714: 464579, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38113580

RESUMO

This study focuses on the extraction of ellagic acid (EA), a valued phenolic compound, from agricultural waste chestnut shell samples. A novel approach is introduced using a combination of boronic acid-modified molecularly imprinted polymer (ZIF@B@MIP) and a nanocomposite of graphene oxide-coated silver nanoparticles (GO@Ag@GSH) to enhance EA enrichment. ZIF@B@MIP precisely captured EA through boronate affinity-based molecular imprinting recognition. ZIF@B@MIP employs boronate affinity-based molecular imprinting recognition to precisely capture EA, while GO@Ag@GSH provides ample adsorption sites. The synergistic effect of ZIF@B@MIP and GO@Ag@GSH demonstrates excellent enrichment capability and selectivity for EA. High-performance liquid chromatography (HPLC) is employed for sensitive EA detection, achieving a maximum adsorption capacity of 46.25 mg g-1 and an imprinting factor of 3.01. The adsorption capacity to different structural analogue was investigated, and the selectivity coefficient was used to evaluate the selectivity, and its value was 1.16-3.01. The method successfully enriches EA in chestnut shell samples with a recovery rate of 95.6 %-110.1 %. This research presents an innovative approach for effective phenolic components enrichment from natural resources for pharmaceutical and biochemical applications.


Assuntos
Nanopartículas Metálicas , Impressão Molecular , Ácidos Borônicos/química , Prata , Ácido Elágico , Polímeros/química , Fenóis , Adsorção
13.
Anal Chem ; 95(45): 16481-16488, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37910865

RESUMO

Understanding the interactions between cancer cells and smart substrates is of great benefit to physiology and pathology. Herein, we successfully fabricated two phenylboronic acid (PBA)-functionalized films with different surface topographies using a PBA homopolymer (PBAH) and self-assembled nanoparticles (PBAS) via a layer-by-layer assembly technique. We used a quartz crystal microbalance with dissipation (QCM-D) to monitor the entire cell adhesion process and figured out the adhesion kinetics of HepG2 cells on the two PBA-functionalized films. As seen from the QCM-D data, the HepG2 cells displayed distinctly different adhesion behaviors on the two PBA-functionalized films (PBAS and PBAH films). The results showed that the PBAS film promoted cell adhesion and cell spreading owing to its specific physicochemical properties. Likewise, the slope changes in the D-f plots clearly revealed the evolution of the cell adhesion process, which could be classified into three stages during cell adhesion on the PBA-functionalized films. In addition, compared with the PBAH film, the PBAS film could also control cell detachment behavior in the presence of glucose based on the molecular recognition between the PBA group and the cell membrane. Such a glucose-responsive PBAS film is promising for biological applications, including cell-based diagnostics and tissue engineering. In addition, the QCM-D proved to be a useful tool for in situ and real-time monitoring and analysis of interactions between cells and surfaces of supporting substrates.


Assuntos
Neoplasias , Técnicas de Microbalança de Cristal de Quartzo , Glucose , Ácidos Borônicos/química , Fenômenos Físicos , Quartzo , Adesão Celular
14.
Chem Commun (Camb) ; 59(87): 13030-13033, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37842954

RESUMO

Proximity-induced methodologies for peptide and protein modification have been developed using recognition elements like inhibitors, antibodies, or affinity tags on amino acids. However, the recognition of saccharides for chemical modification remains widely unexplored. Studies exploring boronic acids and their derivatives have shown their alluring capabilities as selective molecular recognition elements for saccharides, and in this study we describe the application of these ideas to the discovery of a catalytic proximity-induced methodology for covalent modification of glycopeptides using boronic acids as a saccharide recognition element.


Assuntos
Ródio , Ródio/química , Ácidos Borônicos/química , Peptídeos/química , Carboidratos , Catálise
15.
Biomacromolecules ; 24(11): 5071-5082, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37691317

RESUMO

Polymeric vehicles often exhibit batch-to-batch variations due to polydispersity, limiting their reproducibility for biomedical applications. In contrast, polyhedral oligomeric silsesquioxane (POSS) has emerged as an attractive candidate for drug delivery due to its precise chemical structure and rigid molecular shape. A promising strategy to enhance drug efficacy while reducing systemic toxicity is the development of multi-stimuli-responsive delivery systems capable of targeted drug release at a disease site. Herein, we developed a drug delivery platform based on POSS-polymer conjugates. By functionalizing the POSS with amino groups and establishing B-N coordination with boronic acids, the nanoparticles (NPs) exhibit responsive behavior to stimuli, including adenosine-5'-triphosphate (ATP), acidic pH, and nucleophilic reagents. We successfully encapsulated two boronic acid-containing molecules: tetraphenylethylene (TPE), serving as a fluorescent probe, and bortezomib (BTZ), an anticancer drug. The TPE@NPs were employed to visualize the cellular uptake of NPs by tumor cells, while the BTZ@NPs exhibited increased cytotoxicity in tumor cells compared with normal cells. This POSS-PEG conjugate offers a nanoparticle platform for encapsulating versatile boronic acid-containing molecules, thereby enhancing drug efficacy while minimizing systemic toxicity. Given the wide-ranging applications of boronic acid-containing molecules in biomedicine, our platform holds significant promise for the development of intelligent drug delivery systems for diagnostics and therapeutics.


Assuntos
Antineoplásicos , Nanopartículas , Ácidos Borônicos/química , Reprodutibilidade dos Testes , Antineoplásicos/farmacologia , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Bortezomib/farmacologia , Polímeros/química
16.
J Agric Food Chem ; 71(29): 11252-11262, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37392452

RESUMO

Quantification of neomycin residues in food samples demands an efficient purification platform. Herein, hierarchical macroporous agarose monoliths with multiple boronate affinity sites were established for selective separation of neomycin. The silica core was synthesized by "one-step" Stöber procedures followed by modification with amino group and incorporation of polyethyleneimine. A versatile macroporous agarose monolith was prepared by emulsification strategies and functionalized with epoxy groups. After introducing polyethyleneimine-integrated silica nanoparticles onto the agarose monolith, fluorophenylboronic acids were immobilized. The physical and chemical characteristics of the composite monolith were analyzed systematically. After optimization, neomycin showed high binding ability of 23.69 mg/g, and the binding capacity can be manipulated by changing the pH and adding monosaccharides. The composite monolith was subsequently utilized to purify neomycin from the spiked model aquatic products followed by high-performance liquid chromatography analysis, which revealed a remarkable neomycin purification effect, indicating the great potential in the separation of neomycin from complicated aquatic products.


Assuntos
Ácidos Borônicos , Polietilenoimina , Polietilenoimina/química , Sefarose , Ácidos Borônicos/química , Dióxido de Silício/química , Sítios de Ligação , Cromatografia de Afinidade/métodos
17.
Anal Chim Acta ; 1273: 341540, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423655

RESUMO

Accurate and sensitive determination of recombinant glycoproteins is in great demand for the treatment of anemia-induced chronic kidney disease and the illegal use of doping agents in sports. In this study, an antibody and enzyme-free electrochemical method for the detection of recombinant glycoproteins was proposed via the sequential chemical recognition of hexahistidine (His6) tag and glycan residue on the target protein under the cooperation interaction of nitrilotriacetic acid (NTA)-Ni2+complex and boronic acid, respectively. Specifically, NTA-Ni2+ complex-modified magnetic beads (MBs-NTA-Ni2+) are employed to selectively capture the recombinant glycoprotein through the coordination interaction between His6 tag and NTA-Ni2+ complex. Then, boronic acid-modified Cu-based metal-organic frameworks (Cu-MOFs) were recruited by glycans on the glycoprotein via the formation of reversible boronate ester bonds. MOFs with abundant Cu2+ ions acted as efficient electroactive labels to directly produce amplified electrochemical signals. By using recombinant human erythropoietin as a model analyte, this method showed a wide linear detection range from 0.01 to 50 ng/mL and a low detection limit of 5.3 pg/mL. With the benefits from the simple operation and low cost, the stepwise chemical recognition-based method shows great promise in the determination of recombinant glycoproteins in the fields of biopharmaceutical research, anti-doping analysis and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/química , Técnicas Eletroquímicas/métodos , Glicoproteínas/química , Histidina/química , Ácidos Borônicos/química , Técnicas Biossensoriais/métodos , Limite de Detecção
18.
Bioorg Med Chem ; 91: 117405, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421711

RESUMO

Boronic acids are essential building blocks used for the synthesis of bioactive molecules, the generation of chemical libraries and the exploration of structure-activity relationships. As a result, more than ten thousand boronic acids are commercially available. Medicinal chemists are therefore facing a challenge; which of them should they select to maximize information obtained by the synthesis of new target molecules. The present article aims to help them to make the right choices. The boronic acids used frequently in the synthesis of bioactive molecules were identified by mining several large molecular and reaction databases and their properties were analyzed. Based on the results a diverse set of boronic acids covering well the bioactive chemical space was selected and is suggested as a basis for library design for the efficient exploration of structure-activity relationships. A Boronic Acid Navigator web tool which helps chemists to make their own selection is also made available at https://bit.ly/boronics.


Assuntos
Ácidos Borônicos , Bibliotecas de Moléculas Pequenas , Ácidos Borônicos/química , Bases de Dados Factuais , Bibliotecas de Moléculas Pequenas/farmacologia
19.
Org Lett ; 25(29): 5476-5480, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37466099

RESUMO

Benzodiazaborines (BDABs) have emerged as a valuable tool to produce stable and functional bioconjugates via a click-type transformation. However, the current available methods to install them on peptides lack bioorthogonality, limiting their applications. Here, we report a strategy to install BDABs directly on peptide chains using (2-cyanamidophenyl)boronic acids (2CyPBAs). The resulting BDAB is stabilized through the formation of a key intramolecular B-N bond. This technology was applied in the selective modification of N-terminal cysteine-containing functional peptides.


Assuntos
Ácidos Borônicos , Cisteína , Ácidos Borônicos/química , Cisteína/química , Peptídeos/química , Nitrilas/química , Cianamida/química
20.
Talanta ; 265: 124867, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37385192

RESUMO

Boronate affinity adsorbents are of great promise in the enrichment of small cis-diol-containing molecules (cis-diols) from biological matrices. This work develops a restricted-access boronate affinity mesoporous adsorbent, in which boronate sites are only distributed on the internal surface of mesopores and the external surface is a strongly hydrophilic layer. The adsorbent has high binding capacities (30.3 mg g-1, 22.9 mg g-1 and 14.9 mg g-1 for dopamine, catechol and adenosine, respectively) in spite of removal of the boronate sites on the external surface of adsorbent. The adsorption specific of adsorbent towards cis-diols was assessed by dispersive solid-phase extraction (d-SPE) method, and the results show that the adsorbent can selectively extract small cis-diols in the biosamples while exclude proteins completely. Under the optimal d-SPE, the nucleosides and cis-diol drugs in human serum were successfully analyzed by coupling d-SPE with high-performance liquid chromatography. Where, the detection limits are between 6.1 and 13.4 ng mL-1 for four nucleosides, and 24.9 and 34.3 ng mL-1 for two cis-diol drugs; the relative recoveries of all the analytes vary from 84.1% to 110.1% (RSDs <13.4%, n = 6). The results indicate that the adsorbent can directly treat the real biosamples without the necessary protein precipitation steps in advance, thus simplifying the analysis process.


Assuntos
Ácidos Borônicos , Nucleosídeos , Humanos , Ácidos Borônicos/química , Adsorção , Adenosina , Dopamina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...